Theme 1 - Supply

- Isolated island
- 50,000 inhabitants
- 100 people/km²
- 0.5 car/person
- 2.5 people/house

temperature (ºC)

precipitation (mm/day)

Wind Speed (m/s)

Group	Application	Торіс	Observations	Questions
1	Transport	Biofuels	Type of Fuel	kWh(t)/m² e €/kWh W(t)/W _{installed}
2	Electricity	Wind	Onshore vs Offshore?	
3		Solar	PV – Roof and Municipal	
4		Hydro	Run-of-water	
5	Heat	Biomass	Co-generation	
6		Solar Thermal	Domestic hot water	
7		Waste	Biogas for hot water or electricity production	

How to (simply) calculate cost of energy

- Determine cost of installation $[C_W] = \notin /W_{inst}$ Include maintenance costs if possible
- Determine Lifetime [L] = year
- Determine yearly production

$$\left[E_{year}\right] = \frac{Wh}{W_{inst}} / year$$

• To finally determine the cost of energy

$$\left[C_E = \frac{C_W}{E_{year}L}\right] = \text{€/Wh}$$

Group 1: Transport - Biofuels

- Type of fuel and use
- Origin of biofuel
 - What crops are used for biofuel production?
 - Not very important, but if you have time you can consider biofuels from waste products.
- Environmental impact
 - Local Emissions e.g. NO_x for diesel type engines (high compression engines)
 - Competition with food crops
- Compatibility with Island's climatic conditions
 - Temperature
 - Precipitation
 - Will be require storage of water and irrigation?
 - How many times can the crops be collected
 - Nutrient exhaustion
- How does production capacity and cost vary according to type of crops
 - kWh/m²/year
 - €/kWh

Group 2: Electricity - Wind

- Wind time series speed and direction
 - How does this vary during the year? Examine differing periods.
 - How does wind speed vary with
 - Height
 - Onshore vs offshore
- Relevant environmental impacts?
- What kind of turbines?
 - Onshore versus offshore
 - Do we want large or small turbines?
 - Compare power vs wind speed
 - You should also normalise these curves
 - Installation cost €/W_{inst}
- How close can these be installed, i.e. spatial density?
- Determine for differing turbines
 - Energy density: kWh/m²/year and Wh/W/year
 - Power production temporal profile W(t)/W
 - how does this vary according to time of year and turbine model?
 - and how does the capacity factor C_F?
 - Cost €/kWh
 - How do these differ depending on the turbine and location?

Group 3: Electricity – Solar PV

- Solar irradiation time series
 - Analyse data to see how it varies according to the year.
- Rooftop versus municipal scale
 - Find typical installation €/W costs
 - Rooftop systems
 - How many houses do we have?
 - What may be a reasonable rooftop area available for PV installation?
 - Municipal systems
 - Consider how costs may decrease with installation size and how does land use compare to rooftop systems.
 - Other comparative advantages between types of installations
- Determine for difering angles of inclination
 - Energy density kWh/m²/year and Wh/W/year
 - Power production temporal profile W(t)/W
 - how does this vary according to time of year and inclination?
 - and how does the affect the capacity factor C_{F} ?
 - Cost €/kWh
 - How do these differ depending on inclination and type?

Group 4: Electricity – Hydro Run-of-water

- Precipitation time-series
 - River flow data given, but use the following parameters

 - 20% ecological flow
 - 20% losses
 - Basin area=100km²
 - How does production vary during the year?
 - How does this affect turbine type choice.
- Find typical installation €/W costs as a function of total power installed.
- Determine for differing turbine powers
 - Energy density kWh/m²/year and Wh/W/year
 - Power production temporal profile W(t)/W
 - how does this vary according to time of year and size of turbine?
 - and how does the affect the capacity factor C_F ?
 - Electricity Cost €/kWh
 - How does the electricity cost evolve as a function of power installed (i.e. resultant capacity factor of system)?

Group 5: Heat – Biomass

- What type of crops/forest (climate)?
- Consider social impact: rural jobs?
- Environmental impacts are emissions of particles and toxic gases a problem?
- Power conversion efficiency
- Coefficient of exploitability how much biomass can I remove each year from a forest to ensure impacts are negligible
- Costs and potential
 - Include power station installation cost
 - What is the cost structure, fuel, maintenance, personal, installation.
 - Include costs of transport
 - €/kWh
 - kWh/m²/year
 - What is the capacity factor?

Group 6: Heat – Domestic Hot Water

- Do not think of consumption as of yet!
- Rooftop systems
 - What sort of technologies are in market now? Quick comparison between them.
 - Typical installation costs €/W
 - Cost structure, installation, maintenance
- What is the typical efficiency of a solar thermal system?
 - For your efficiency calculations consider
 - input water temperatures
 - Summer: 20°C
 - Spring/Autumn: 15°C
 - Winter: 10°C
 - Irradiation between 100W/m² and 1000W/m²
- Use the Irradiation hourly time series to work out a time series for:
 - kWh_{thermal}(t=day) as a function of panel inclination
 - How does this vary according to inclination of panels
 - Examine different weeks to demonstrate possible advantages and disadvantages
- What is the resultant:
 - Energy density kWh_{thermal}/m²/year and Wh_{thermal}/W/year
 - As a function of panel inclination
 - Energy production temporal profile Wh(day)/W
 - how does this vary according to time of year and inclination of panel?
 - and how does the affect the capacity factor C_F ?
 - Energy (thermal) cost €/kWh_{thermal}

Group 7: Heat – Waste

- What is the ideal profile
 - High quality of life versus waste production
 - How does this compare for differing countries?
 - What is a typical waste profile?
 - Determine non-recyclable waste
 - kg/person/year
- Environmental impacts
 - Emissions of toxic gases and particles
 - Incineration versus landfills
- Incineration vs biogas
 - Biogas may be stored and used for e.g. hot water heating in homes.
- Cost (€/kWh) and Potential
 - Incineration: electricity and heat production
 - For incineration include installation costs of power station
 - What is the capacity factor for incineration?
 - Biogas: Heating only
 - For biogas production include installation cost of biogas production plant
 - Energy potential kWh/year/person

Presentations

- 10m max
- 5m discussion
- Simple slides keep the details for the report
- 10 to 15 slides
- NO DELAYS!
 - Send presentations via moodle, link will be made available.

Slides	25%
Oral - individual	25%
Scientific Accuracy	25%
Q&A	25%

Reports

- Template will be made available
 - Length up to 4 to 5 pages of running text as per the template.
 - Reports are to be printed and handed in by hand and stapled during class
 - Equations on separate sheet
 - Tables on separate individual sheets
 - Figures on separate individual sheets
 - Only include data and figures which are relevant to your text.
 - Try to make your own figures and keep them simple!
- Submit Calculations (excel spreadsheet or Matlab scripts) for confirmation via moodle link.
- Use Mendeley or Word's internal system for referencing will show how to use this in class if you ask me.

Scientific Accuracy	40%
Figures/Tables/Layout	30%
Text	30%